LA LOI D'OHM

NOTA :

Le but d'électronique est de vous expliquer certaines règles qui peuvent vous aider dans certains domaines et notamment sur les fonctionnement des ordinateurs. Nous commencerons sur des pages différentes et en bas de celles-ci, vous verrez un lien intitulé "Leçons suivantes ou sommaire électronique" qui vous permettra de naviguer afin de vous guider et, à suivre les leçons dans l'ordre correspondantes. Donc, Nous commencerons par la loi d'Ohm puis la loi de Joule et bien d'autres... (Important : certains paragraphes sont destinés aux débutants).

Toutes les grandeurs électriques relatives à un circuit sont maintenant définies comme ci-dessous et nous supposons que vous connaissiez la tension, le courant (ou l'intensité) et la résistance.

Nous pouvons passer à l'examen d'un circuit complet et voir quelle influence ont chacune de ces trois grandeurs sur son fonctionnement. Commençons par le circuit très simple tel qu'il est représenté figure 1-a)

F1

Ce circuit est constitué d'une résistance reliée à une pile, l'insertion de la résistance est nécessaire pour que le circuit présente une valeur résistive bien déterminée.

Figure 1-a, les composants du circuit sont représentés sous leur aspect réel mais lors de l'examen des circuits électriques on considère toujours les composants sous leur aspect symbolique. Nous obtenons ainsi le schéma électrique du circuit à analyser.

Figure 1-b sont donnés les symboles électriques des trois composants de notre circuit, tandis que la figure 1-c apparaît son schéma électrique

Les lettres A, B, C et D des figures 1-a et 1-c désignent les point où les deux conducteurs reliant la pile et la résistance sont soudés sur ces deux éléments. La partie du schéma à gauche des points A et B représente le circuit interne de la pile tandis que la partie à droite de ces mêmes points représente le circuit extérieur à la pile, circuit constitué par les conducteurs et la résistance.

Sur la figure 1-c, nous pouvons indiquer clairement les différentes grandeurs électriques connues. La tension obtenue aux bornes de la pile entre les points A et B est désignée par son symbole V. Ce symbole est inscrit entre les deux flèches qui mettent en évidence les point A et B, points entre lesquels apparaît cette tension. La même tension V est également présente aux bornes de la résistance R, c'est-à-dire entre les point C et D, car le point (C) est relié directement au point (A) et donc possède le même potentiel électrique que ce point ; il en est de même avec le point D relié directement à B.

La résistance du circuit extérieur à la pile est repérée par son symbole R. On ne tient compte que de la valeur résistive de la résistance et l'on néglige celles des conducteurs et de la pile qui sont très faibles. Enfin, le courant qui traverse le circuit est désigné par son symbole (I) avec la flèche montrant la direction de son déplacement suivant le sens conventionnel. Nous voyons clairement sur ce schéma que le courant part du pôle positif de la pile, traverse le conducteur AC puis la résistance R et revient au pôle négatif de la pile via le conducteur DB.

La tension V existante aux bornes de la pile a tendance à provoquer la circulation du courant I tandis que la résistance R présente un obstacle à son passage : on comprend que l'intensité va dépendre de la tension et de la résistance. En d'autres termes, il doit exister une relation qui lie entre elles ces trois grandeurs électriques fondamentales.

Cette relation fut découverte par le physicien Allemand Georges Simon OHM (1789-1854) et fut appelée loi d'Ohm. L'unité de résistance porte également le nom de ce physicien.

Ohm put énoncer sa loi à la suite de nombreuses expériences et de mesures minutieuses ; pour se faire une idée du procédé qu'il adopta, on peut faire quelques remarques simples.

Comme la tension de la pile est la cause qui détermine la circulation du courant dans le circuit, si on augmente la tension, on augmente aussi l'intensité du courant ; on peut facilement vérifier ce fait en reliant successivement au circuit des piles qui donnent des tensions toujours plus élevées et en mesurant l'intensité du courant que chacune d'elles fait circuler, mais on peut aller plus loin. En effet, si on divise la tension de chaque pile par l'intensité du courant qu'elle fait circuler, on trouve toujours la même valeur ; cette valeur ne varie donc pas, bien qu'on fasse varier la tension, et aussi par conséquent l'intensité du courant.

Nous observons donc que des trois grandeurs électriques considérées dans notre circuit la seule qui n'ai pas variée est la résistance puisque nous avons toujours conservé le même composant. Nous pouvons penser que cette grandeur constante est égale au résultat, lui-même constant, de la division de la tension par l'intensité du courant.

OHM constata cette réalité et énonça sa loi de la manière suivante :

Mais pour faire varier le courant qui circule dans le circuit, nous pouvons faire varier la résistance au lieu de la tension : en effet, comme la résistance est un obstacle à la circulation du courant, si on l'augmente on doit diminuer le courant, car il rencontre un obstacle plus grand.

Nous pouvons facilement vérifier ce fait, en conservant ou en prenant une pile, et en remplaçant la résistance par d'autres composants qui ont une résistance de plus en plus grande : on mesure l'intensité du courant dans chaque cas, et on peut constater que si la résistance augmente, le courant diminue.

Si ensuite nous multiplions la valeur résistive de chaque résistance par le courant qui la traverse, nous trouvons toujours la même valeur bien que résistance et courant varient.

Dans ce cas, des trois grandeurs électriques, seule la tension demeure constante car la même pile est utilisée. Nous pouvons donc penser que la valeur trouvée en multipliant la résistance par l'intensité du courant qui la traverse est la valeur de la tension de la pile.

Là aussi, OHM constata cet état de fait et put énoncer sa loi de cette deuxième façon :

A ce point, nous pouvons observer que pour faire varier le courant, nous avons d'abord fait varier tension et résistance séparément. Voyons maintenant ce qui se passe si la tension et la résistance varient simultanément et dans les mêmes proportions.

De cette manière, si l'on divise la tension par la résistance, on trouve toujours la même valeur. D'autre part, si l'on mesure le courant qui circule dans le circuit pour chaque cas, nous nous apercevons qu'il conserve toujours la même valeur : nous pouvons donc penser que la valeur trouvée en divisant la tension par la résistance est justement celle de l'intensité du courant.

Dans ce cas encore, OHM aboutit à cette conclusion, ce qui lui fit énoncer sa loi d'une troisième façon

Vous ne devez pas penser qu'il y a trois lois d'Ohm : la loi d'Ohm est unique, mais comme elle lie entre elles trois grandeurs électriques (tension, intensité du courant et résistance) elle peut se présenter sous trois formes différentes, selon la grandeur que l'on fait dépendre des autres.

La loi d'Ohm permet donc de calculer l'une des trois grandeurs en connaissant les deux autres. Pour bien vous rendre compte de ceci, regardez la figure 2 sur laquelle sont représentés les trois cas dans lesquels la loi d'Ohm peut être utilisée sous ses trois formes différentes. (la loi d'Ohm sera démontrée en détail dans la page intitulée "Mathématique").

F2

Il peut arriver que l'on veuille calculer la résistance d'un circuit auquel est reliée une pile, qui donne une certaine tension, par exemple 15 volts, et qui fait circuler un courant de 3 ampères (figure 2-a). Dans ce cas, on calcule la résistance en divisant la tension par l'intensité du courant, il suffit d'appliquer la formule de la loi d'Ohm :

F3

R = 15 Volts / 3 Ampères = 5 Ohms.

Donc R = 5 Ohms.

On peut, au contraire, vouloir calculer la tension que doit avoir une pile pour faire circuler un courant déterminé dans un circuit de résistance connue (figure 2-b) : dans ce cas, on calcule la tension en multipliant la résistance par l'intensité du courant. Prenons les mêmes valeurs que ci-dessus, nous aurons :

F4

V = 5 Ohms x 3 Ampères = 15 Volts.

Donc V = 15 Volts.

On peut enfin vouloir calculer le courant qui circule dans un circuit de résistance connue auquel est reliée une pile qui donne une tension connue (figure 2-c) : dans ce cas, on calcule l'intensité du courant en divisant la tension par la résistance. Prenons toujours les mêmes valeurs évoquées.

F5

I = 15 Volts / 5 Ohms = 3 Ampères.

Donc I = 3 Ampères.

Note : Le symbole de la tension, peut être soit V ou U. De ces trois exemples, nous pouvons comprendre la grande utilité de la loi d'Ohm pour les calculs pratiques : gardez toujours en mémoire la figure 2 et les trois formes de la loi d'Ohm. Comme vous pouvez le constater, on tombe bien sur nos pieds, puisque nous avons bien les trois résultats à savoir : 5 Ohms, 15 Volts et 3 Ampères.

Sommaire
Sommaire